Summary: A new blood sample test is capable of measuring the build-up of Alzheimer’s disease-associated amyloid-beta in the brain.

Source: Hokkaido University

Researchers from Hokkaido University and Toppan have developed a method to detect build-up of amyloid β in the brain, a characteristic of Alzheimer’s disease, from biomarkers in blood samples.

Alzheimer’s disease is a neurodegenerative disease, characterised by a gradual loss of neurons and synapses in the brain. One of the primary causes of Alzheimer’s disease is the accumulation of amyloid β (Aβ) in the brain, where it forms plaques. Alzheimer’s disease is mostly seen in individuals over 65 years of age, and cannot currently be stopped or reversed. Thus, Alzheimer’s disease is a major concern for nations with aging populations, such as Japan.

A team of scientists from Hokkaido University and Toppan, led by Specially Appointed Associate Professor Kohei Yuyama at the Faculty of Advanced Life Science, Hokkaido University, have developed a biosensing technology that can detect Aβ-binding exosomes in the blood of mice, which increase as Aβ accumulates in the brain.

Their research was published in the journal Alzheimer’s Research & Therapy.

When tested on mice models, the Aβ-binding exosome Digital ICATM (idICA) showed that the concentration of Aβ-binding exosomes increased with the increase in age of the mice. This is significant as the mice used were Alzheimer’s disease model mice, where Aβ builds up in the brain with age.

In addition to the lack of effective treatments of Alzheimer’s, there are few methods to diagnose Alzheimer’s. Alzheimer’s can only be definitively diagnosed by direct examination of the brain—which can only be done after death. Aβ accumulation in the brain can be measured by cerebrospinal fluid testing or by positron emission tomography; however, the former is an extremely invasive test that cannot be repeated, and the latter is quite expensive. Thus, there is a need for a diagnostic test that is economical, accurate and widely available.

Alzheimer’s disease is a neurodegenerative disease, characterised by a gradual loss of neurons and synapses in the brain. Image is in the public domain

Previous work by Yuyama’s group has shown that Aβ build-up in the brain is associated with Aβ-binding exosomes secreted from neurons, which degrade and transport Aβ to the microglial cells of the brain. Exosomes are membrane-enclosed sacs secreted by cells that possess cell markers on their surface.

The team adapted Toppan’s proprietary Digital Invasive Cleavage Assay (Digital ICATM) to quantify the concentration of Aβ-binding exosomes in as little as 100 µL of blood. The device they developed traps molecules and particles in a sample one-by-one in a million micrometer-sized microscopic wells on a measurement chip and detects the presence or absence of fluorescent signals emitted by the cleaving of the Aβ-binding exosomes.

Clinical trials of the technology are currently underway in humans. This highly sensitive idICA technology is the first application of ICA that enables highly sensitive detection of exosomes that retain specific surface molecules from a small amount of blood without the need to learn special techniques; as it is applicable to exosome biomarkers in general, it can also be adapted for use in the diagnosis of other diseases.

About this Alzheimer’s disease research news

Author: Sohail Keegan Pinto
Source: Hokkaido University
Contact: Sohail Keegan Pinto – Hokkaido University
Image: The image is in the public domain

Original Research: Open access.
“Immuno-digital invasive cleavage assay for analyzing Alzheimer’s amyloid β-bound extracellular vesicles” by Kohei Yuyama et al. Alzheimer’s Research & Therapy

See also

This shows a mouth

Abstract

Immuno-digital invasive cleavage assay for analyzing Alzheimer’s amyloid β-bound extracellular vesicles

Background

The protracted preclinical stage of Alzheimer’s disease (AD) provides the opportunity for early intervention to prevent the disease; however, the lack of minimally invasive and easily detectable biomarkers and their measurement technologies remain unresolved. Extracellular vesicles (EVs) are nanosized membrane vesicles released from a variety of cells and play important roles in cell–cell communication. Neuron-derived and ganglioside-enriched EVs capture amyloid-ß protein, a major AD agent, and transport it into glial cells for degradation; this suggests that EVs influence Aß accumulation in the brain. EV heterogeneity, however, requires the use of a highly sensitive technique for measuring specific EVs in biofluid. In this study, immuno-digital invasive cleavage assay (idICA) was developed for quantitating target-intact EVs.

Methods

EVs were captured onto ganglioside GM1-specific cholera toxin B subunit (CTB)-conjugated magnetic beads and detected with a DNA oligonucleotide-labeled Aß antibody. Fluorescence signals for individual EVs were then counted using an invasive cleavage assay (ICA). This idICA examines the Aß-bound and GM1-containing EVs isolated from the culture supernatant of human APP-overexpressing N2a (APP-N2a) cells and APP transgenic mice sera.

Results

The idICA quantitatively detected Aß-bound and GM1-containing EVs isolated from culture supernatants of APP-N2a cells and sera of AD model mice. The idICA levels of Aß-associated EVs in blood gradually increased from 3- to 12-month-old mice, corresponding to the progression of Aß accumulations in the brain of AD model mice.

Conclusions

The present findings suggest that peripheral EVs harboring Aß and GM1 reflect Aß burden in mice. The idICA is a valuable tool for easy quantitative detection of EVs as an accessible biomarker for preclinical AD diagnosis.



Source link