Abstract

BACKGROUND AND PURPOSE

Tractography of the cerebellar peduncles in fetuses of varying gestational ages. Sagittal and axial tractography images overlaid on super-resolution T2 reconstructions show successful and symmetric delineation of the SCP in a 26-week 5-day-old male fetus (A). Sagittal and axial tractography images in a 36-week 2-day-old male fetus show successful tractography with asymmetry in the SCP reconstructions (B).

Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography.

MATERIALS AND METHODS

3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy.

RESULTS

Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age.

CONCLUSIONS

A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.

Read this article: https://bit.ly/37R3wGy


jross

Jeffrey Ross

• Mayo Clinic, Phoenix

Dr. Jeffrey S. Ross is a Professor of Radiology at the Mayo Clinic College of Medicine, and practices neuroradiology at the Mayo Clinic in Phoenix, Arizona. His publications include over 100 peer-reviewed articles, nearly 60 non-refereed articles, 33 book chapters, and 10 books. He was an AJNR Senior Editor from 2006-2015, is a member of the editorial board for 3 other journals, and a manuscript reviewer for 10 journals. He became Editor-in-Chief of the AJNR in July 2015. He received the Gold Medal Award from the ASSR in 2013.



Source link

LEAVE A REPLY

Please enter your comment!
Please enter your name here